34 research outputs found

    Efficient Collective Action for Tackling Time-Critical Cybersecurity Threats

    Full text link
    The latency reduction between the discovery of vulnerabilities, the build-up and dissemination of cyber-attacks has put significant pressure on cybersecurity professionals. For that, security researchers have increasingly resorted to collective action in order to reduce the time needed to characterize and tame outstanding threats. Here, we investigate how joining and contributions dynamics on MISP, an open source threat intelligence sharing platform, influence the time needed to collectively complete threat descriptions. We find that performance, defined as the capacity to characterize quickly a threat event, is influenced by (i) its own complexity (negatively), by (ii) collective action (positively), and by (iii) learning, information integration and modularity (positively). Our results inform on how collective action can be organized at scale and in a modular way to overcome a large number of time-critical tasks, such as cybersecurity threats.Comment: 23 pages, 3 figures. Presented at the 21st Workshop on the Economics of Information Security (WEIS), 2022, Tulsa, US

    Artificial pancreas systems for people with type 2 diabetes: Conception and design of the european CLOSE project

    Get PDF
    In the last 10 years tremendous progress has been made in the development of artificial pancreas (AP) systems for people with type 1 diabetes (T1D). The pan-European consortium CLOSE (Automated Glucose Control at Home for People with Chronic Disease) is aiming to develop integrated AP solutions (APplus) tailored to the needs of people with type 2 diabetes (T2D). APplus comprises a product and service package complementing the AP system by obligatory training as well as home visits and telemedical consultations on demand. Outcome predictors and performance indicators shall help to identify people who could benefit most from AP usage and facilitate the measurement of AP impact in diabetes care. In a first step CLOSE will establish a scalable APplus model case working at the interface between patients, homecare service providers, and payers in France. CLOSE will then scale up APplus by pursuing geographic distribution, targeting additional audiences, and enhancing AP functionalities and interconnectedness. By being part of the European Institute of Innovation and Technology (EIT) Health public-private partnership, CLOSE is committed to the EIT “knowledge triangle” pursuing the integrated advancement of technology, education, and business creation. Putting stakeholders, education, and impact into the center of APplus advancement is considered key for achieving wide AP use in T2D care

    TOI-836 : a super-Earth and mini-Neptune transiting a nearby K-dwarf

    Get PDF
    Funding: TGW, ACC, and KH acknowledge support from STFC consolidated grant numbers ST/R000824/1 and ST/V000861/1, and UKSA grant ST/R003203/1.We present the discovery of two exoplanets transiting TOI-836 (TIC 440887364) using data from TESS Sector 11 and Sector 38. TOI-836 is a bright (T = 8.5 mag), high proper motion (∌200 mas yr−1), low metallicity ([Fe/H]≈−0.28) K-dwarf with a mass of 0.68 ± 0.05 M⊙ and a radius of 0.67 ± 0.01 R⊙. We obtain photometric follow-up observations with a variety of facilities, and we use these data-sets to determine that the inner planet, TOI-836 b, is a 1.70 ± 0.07 R⊕ super-Earth in a 3.82 day orbit, placing it directly within the so-called ‘radius valley’. The outer planet, TOI-836 c, is a 2.59 ± 0.09 R⊕ mini-Neptune in an 8.60 day orbit. Radial velocity measurements reveal that TOI-836 b has a mass of 4.5 ± 0.9 M⊕, while TOI-836 c has a mass of 9.6 ± 2.6 M⊕. Photometric observations show Transit Timing Variations (TTVs) on the order of 20 minutes for TOI-836 c, although there are no detectable TTVs for TOI-836 b. The TTVs of planet TOI-836 c may be caused by an undetected exterior planet.Publisher PDFPeer reviewe

    TOI-836: A super-Earth and mini-Neptune transiting a nearby K-dwarf

    Full text link
    We present the discovery of two exoplanets transiting TOI-836 (TIC 440887364) using data from TESS Sector 11 and Sector 38. TOI-836 is a bright (T=8.5T = 8.5 mag), high proper motion (∌ 200\sim\,200 mas yr−1^{-1}), low metallicity ([Fe/H]≈ −0.28\approx\,-0.28) K-dwarf with a mass of 0.68±0.050.68\pm0.05 M⊙_{\odot} and a radius of 0.67±0.010.67\pm0.01 R⊙_{\odot}. We obtain photometric follow-up observations with a variety of facilities, and we use these data-sets to determine that the inner planet, TOI-836 b, is a 1.70±0.071.70\pm0.07 R⊕_{\oplus} super-Earth in a 3.82 day orbit, placing it directly within the so-called 'radius valley'. The outer planet, TOI-836 c, is a 2.59±0.092.59\pm0.09 R⊕_{\oplus} mini-Neptune in an 8.60 day orbit. Radial velocity measurements reveal that TOI-836 b has a mass of 4.5±0.94.5\pm0.9 M⊕_{\oplus} , while TOI-836 c has a mass of 9.6±2.69.6\pm2.6 M⊕_{\oplus}. Photometric observations show Transit Timing Variations (TTVs) on the order of 20 minutes for TOI-836 c, although there are no detectable TTVs for TOI-836 b. The TTVs of planet TOI-836 c may be caused by an undetected exterior planet

    TOI-836: A super-Earth and mini-Neptune transiting a nearby K-dwarf

    Get PDF
    peer reviewe

    Les dihydrochalcones de la pomme (extraction, sĂ©paration et intĂ©rĂȘt mĂ©dical)

    No full text
    STRASBOURG ILLKIRCH-Pharmacie (672182101) / SudocSudocFranceF

    Extending Timbuk to Verify Functional Programs

    Get PDF
    International audienceTimbuk implements the Tree Automata Completion algorithm whose purpose is to over-approximate sets of terms reachable by a term rewriting system. Completion is parameterized by a set of equations defining which terms are equated in the approximation. In this paper we present two extensions of Timbuk which permit us to automatically verify safety properties on functional programs. The first extension is a language, based on regular tree expressions, which eases the specification of the property to prove on the program. The second extension automatically generates a set of equations adapted to the property to prove on the program

    Dual linearly polarised 3D printed Phoenix cell for wide band metal only reflectarrays

    No full text
    International audienceThis study shows the potential of additive manufacturing for the fabrication of 3D Phoenix phase-shifting cell. With traditional microstrip printing technology, the cell has many advantages. Here, the authors demonstrate that the 3D printed version of the cell exhibits very good intrinsic performances in the 17-21 GHz frequency band. A deep insight into the operation mode of the cell is drawn in order to have a better understanding of its behaviour. Different prototypes are fabricated and measured to validate experimentally the numerical results

    Améliorée de la bande passante de réseau réflecteur entiÚrement métallique à base de cellules Phoenix 3D

    No full text
    International audienceCet article étudie des réseaux réflecteurs entiÚrement métalliques à base de cellules Phoenix 3D, pour une réalisation en fabrication additive. La possibilité de faire varier la géométrie de la cellule dans les trois dimensions offre un avantage pour accroßtre la bande passante. Ici, l'effet de la hauteur des cellules est mis à profit pour atteindre une bande passante (-1dB sur le gain) de 18% à 20GHz
    corecore